博客
关于我
【读书1】【2017】MATLAB与深度学习——神经网络(1)
阅读量:212 次
发布时间:2019-02-28

本文共 670 字,大约阅读时间需要 2 分钟。

神经网络的学习规则与大脑的记忆机制存在显著差异。虽然大脑通过神经元之间的连接来存储信息,而计算机则依赖于存储器中的指定位置来储存数据,这两者在存储方式上有根本性区别。

神经元本身并不具备存储能力,它们仅负责将信号从一个神经元传递到另一个神经元。正是这种传递机制,使得大脑能够形成复杂的神经网络。这种网络通过神经元之间的连接,逐步构建起对特定信息的理解和记忆方式。

在神经网络中,节点之间的连接就像大脑中神经元的连接一样,通过这些连接,网络能够学习和记忆新的信息。值得注意的是,神经网络的核心机制是其所谓的"权值"。这些权值决定了不同输入信号对节点的影响程度,就像大脑中神经元之间的强度不同会影响信号传递一样。权值的设置直接影响着网络的学习效果和记忆能力。

权值和偏置是神经网络中最关键的概念。权值决定了输入信号的强度,而偏置则为每个节点提供了基本的活性。这些参数通过反向传播算法进行调整,使得网络能够适应新的任务和学习目标。

为了更直观地理解神经网络的工作原理,我们可以考虑一个简单的例子:一个接受三个输入信号的节点。每个输入信号在到达节点之前都会乘以一个特定的权值,这些加权后的信号再与偏置结合后,形成节点的最终输出。这种加权结合的方式,使得网络能够从大量的输入数据中提取有用的信息,并进行模式识别和数据处理。

通过以上分析可以看出,神经网络的核心在于其能够模拟大脑的学习和记忆机制。通过权值和偏置的调整,网络能够适应不断变化的环境,并完成复杂的任务。这种学习方式与大脑的记忆方式虽然在实现机制上有所不同,但都体现了非线性信息处理的能力。

转载地址:http://upop.baihongyu.com/

你可能感兴趣的文章
Netty源码—5.Pipeline和Handler一
查看>>
Netty源码—5.Pipeline和Handler二
查看>>
Netty源码—6.ByteBuf原理一
查看>>
Netty源码—6.ByteBuf原理二
查看>>
Netty源码—7.ByteBuf原理三
查看>>
Netty源码—7.ByteBuf原理四
查看>>
Netty源码—8.编解码原理一
查看>>
Netty源码—8.编解码原理二
查看>>
Netty源码解读
查看>>
Netty的Socket编程详解-搭建服务端与客户端并进行数据传输
查看>>
Netty相关
查看>>
Netty遇到TCP发送缓冲区满了 写半包操作该如何处理
查看>>
Netty:ChannelPipeline和ChannelHandler为什么会鬼混在一起?
查看>>
Netty:原理架构解析
查看>>
Network Dissection:Quantifying Interpretability of Deep Visual Representations(深层视觉表征的量化解释)
查看>>
Network Sniffer and Connection Analyzer
查看>>
Network 灰鸽宝典【目录】
查看>>
NetworkX系列教程(11)-graph和其他数据格式转换
查看>>
Networkx读取军械调查-ITN综合传输网络?/读取GML文件
查看>>
network小学习
查看>>